
Calculation of an axisymmetric turbulent 
wall jet over a surface of convex curvature 

J. F. Morrison* and D. G. Gregory-Smitht  

One of the many applications of curved wall jets of engineering importance is the 
Coanda Flare, which is used for burning waste gases in the petroleum industry and 
which gave rise to this work. The gas jet f lows over an axisymmetric tul ip shaped 
body, entraining ambient air and so promoting clean combustion. The object of th is 
work was to calculate the development of the jet with the extra rates of strain 
imposed by both longitudinal curvature and divergence. A differential "partially- 
parabolic' technique was used with uncoupl ing of the streamwise and cross- 
stream momentum equations, leading to an efficient computer program. The extra 
rates of strain were modelled by corrections to a mixing length model wi th the two 
effects being assumed to be additive. The calculation method was compared with 
seven test cases of experimental data. The first five were from published literature, 
and included the plane wall jet and axisymmetric free jet, and the separate effects of 
longitudinal curvature and divergence. The last two cases were measurements of 
the wall jet f low over a model Coanda Flare. The calculation method gave generally 
good results for the main features of the f low such as growth rate and velocity 
decay. Details of the f low were not so well predicted, particularly the turbulent 
shear stress, as a result of the relatively simple turbulence model employed. The 
calculation method should provide a useful engineering tool, but some profitable 
developments could be made, particulary in the area of turbulence modell ing 
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Jets blown over convex surfaces will adhere to the surface, 
a phenomenon known as the Coanda effect. 'Destabilis- 
ing' steamwise surface curvature increases turbulence in 
the jet, and so the entrainment of ambient fluid is 
increased. This property is used in the design of flares in 
the petroleum industry for burning waste gases, where the 
high entrainment promotes complete combustion. Such 
flares have been reported by Wilkins et al I and a typical 
geometry is shown in Fig I. Higher pressure gas blows out 
radially from a slot at the base of the axisymmetric tulip 
shaped body and adheres to the surface entraining 
ambient air. Combustion is initiated near the top of the 
body, so that the flow around the lower part is largely 
uninfluenced by combustion. The design of these flares 
has been largely empirically based, and the aim of this 
work was to study the aerodynamics of the flare and to 
develop calculation techniques which could be used to 
improve future flare design. 

This effect has been reported by several workers 
since the last century; Coanda patented a number of 
devices using the effect, and thus his name became 
associated with it (see Newman2). Bradshaw 3 disti- 
nguished three phenomena covered by the term 'Coanda 
effect': the tendency of a fluid to remain attached to a 
curved surface (an invisid effect), the tendency of jet placed 
near a surface to attach itself to the surface due to 
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entrainment of ambient fluid (a viscous effect), and the 
effect of longitudinal curvature causing increased entrain- 
ment and jet growth. In the Coanda Flare, as well as the 
effect of longitudinal curvature, there is initially diver- 
gence of the flow at the base of the flare where the flow is 
radially outwards. This divergence is reduced as the flow 
goes round the surface until finally there is convergence 
on the conical top part of the flare. The longitudinal 
curvature and divergence/convergence of the flow were 
considered by Bradshaw 3 as extra rates of strain. Their 
effect on the turbulence structure is an order of magnitude 
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Fig 1 Coanda flare and co-ordinate system 
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greater than that suggested by the extra terms in the 
Reynolds stress transport equations. 

For a wall jet on a flat surface, Glauert 4 produced a 
theoretical analysis, which was complemented by expe- 
rimental work notably by Schwarz and Cosart 5 and 
Myers et al. 6 Wall jets over curved surfaces were studied 
by various workers including Guitton and Newman 7, 
Bradshaw and Gee 8, Alcaraz et al. 9 and Wilson and 
Goldstein 1 o. They showed that the growth rate of the jet is 
greater than for a flat surface, with increased turbulent 
mixing in the outer part of the jet; the fluctuating 
component perpendicular to the surface is particularly 
increased. Below the velocity maximum, where the sign of 
the mean velocity gradient is positive, turbulent mixing is 
reduced, increasing the importance of turbulent diffusion 
from the outer to the inner region. In consequence, the 
position of zero shear stress, which is not coincident with 
the velocity maximum, moves towards the wall with 
increasing curvature. 

Studies on the effects of divergence and con- 
vergence have been fewer. Bakke 1 ~ studied the radial wall 
jet over a flat surface. On conical surfaces, Smits et al az 
studied the boundary layer flow and Sharma t3 in- 
vestigated the wall jet. The extra rate of strain imposed by 
divergence gives greater growth rates than for a fiat plate 
wall jet by up to 20~o for a radial wall jet. Convergence 
gives the opposite effect. 

Calculation of wall jet flows was based initially on 
integral methods, notably by Glauert 4, who matched a 
free jet outer part to a boundary layer inner part. The 
advent of computers has allowed the development of 
more powerful differential calculation techniques such as 
the 'Genmix' code developed by the group led by 
Spalding ~4. This is a general 'space marching' method for 
shear layer flows and can be applied to wall jets. Other 
differential methods have been developed, such as those 
by Bradshaw et a115 and Cebeci and Smith 16. All these 
methods require a turbulence model and, for this appli- 
cation, the model has to be modified for the effects of 
longitudinal curvature and divergence. 

This paper discusses the development of a suitable 
turbulence model together with the associated calculation 
method. The results are compared with the measurements 
made on a model flare described in detail by Morrison 17. 

Calculation method 

Any shear layer calculation method requires that the grid 
is aligned approximately with the direction of flow. Thus 
in the method described below, shear layer axes are used 
initially. Large streamwise surface curvature implies the 
need for an iterative numerical scheme; transport equa- 
tions are solved in finite difference form. 

The coordinate system used to derive the equa- 
tions of motion is shown in Fig 1. The x-direction follows 
the internal (I) boundary which can be either a solid 
surface of an axis of symmetry. I is a solid boundary in 
cases where @/~y~O and the external (E) boundary is 
always the free edge of the shear layer. The grid is semi- 
curvilinear but orthogonal as shown in Fig 1. The flow 
will be referred to as 'plane' when the axisymmetric radius 
of curvature, R, tends to infinity. For a finite value of R, 
the flow is described as 'axisymmetric' and the control 
volume possesses both streamline and axisymmetric 
curvature. 

For large streamline curvature where 6/r= O (0.1) 
an order of magnitude analysis of the equations of motion 
is necessary since neither the usual boundary layer 
approximation (@/~y=O) nor indeed the centrifugal 
approximation t~p/Oy=pU2/r is sufficient. It is assumed 
that r/x= O(1), V= O(Uf/x) ,  that x ~ / U m  ~ 0.3 and that 
other significant Reynolds stresses are of the same order. 
In general it may be supposed that gradients in the x- and 
y-directions will be of the same order as the dependent 
variable divided by x and 6 respectively, h is approxi- 
mated to unity. A consistent set of equations given by 
Bradshaw 3 is: 

Notation 
Cl,C 2 Constants, Eq (15)418) 
e Extra strain rate 
E External boundary 
F Correction factor to mixing length (Eq (8)) 
h 1 +y/r 
I Internal boundary 
K See Eq (20) 
k,q2/2 Mean turbulent kinetic energy 
l C 

Io 
P 
p' 

R 
r 

Ri 
RiB 

t 
U,V 
~ , ~ , W  

Corrected mixing length 
Uncorrected mixing length 
Pressure 
Fluctuating pressure 
Axisymmetric radius of curvature 
Longitudinal radius of curvature 
Richardson Number U/r 
=2S(1 +S) where S=  ~),_,_ 

Slot height, time 
Mean velocities in x,y directions 
Fluctuating velocities in x,y,z  directions 

X 

Y 
Z 

O~ 

O~ 1,0~ 2 

g 

0 

V 

0 
P 
G 

(11 

Co-ordinate along surface, streamwise 
Co-ordinate perpendicular to surface 
Co-ordinate across surface (normal to x,y) 
Angle (Fig 1) 
Constants, Eqs (8) and (9) 
Constants, Eq (~0) 
Jet thickness 
Turbulent energy dissipation rate 
Angle 
Mixing length constants 
Kinematic viscosity 
Stream function 
Density 
Constant, Eq (21) 
Non-dimensional stream function 
Y/Ym/2 

Subscripts 
m point at velocity maximum 
m/2 point at half velocity maximum 
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x-momentum 
OU OU UV lop  | ~O(~R) +O(h~R) 

~?} vOl ou', 
+ 

y-momentum 
U 2 h Op 1 O(hv2R) 

r p Oy R Oy 

(1) 

(2) 

Continuity 
O(UR) + O(VRh) = 0 (3) 

Ox Oy 

retaining terms up to order 6/x only. In order that the 
approximations are consistent in both the x- and y- 
momentum equations, it should be noted that gradients in 
the y-momentum equation are x/6 times larger. 

Eqs (1)-(3) are still elliptic despite the usual neglect 
of streamwise diffusion by viscosity. Only when Op/Oy = 0 
and the pressure is a known function o fx  does the system 
of equations become parabolic. For  cases reported below 
in which a parabolic system of equations is sufficient, the 
marching integration procedure of Patankar  and Spald- 
ing ~8 and Spalding t4 is used (PS method). A non- 
dimensional stream function: 

0-0x to = - -  (4) 

is used as the cross-stream independent variable; transfor- 
mation to (x¢o) coordinates renders the x-component 
momentum equation linear. 

The differencing scheme uses upwind differences in 
the x direction and central differences in the y or to 
direction giving a four-node implicit difference equation 
that is solved by a tri-diagonal matrix algorithm (tdma). 

The calculation method has been extended to 
include an iterative scheme to permit solution of the full 
elliptic set of Eqs (1)-(3). It is similar to that of the 
'partially-parabolic' scheme of Patankar and Spalding ~ 9. 
The algorithm sequence is: 

1. The pressure field p(x,y) is first guessed by assuming 
that Op/Oy=O and that the pressure is determined by 
the free steam pressure. For  the cases reported here, the 
free stream pressure was always atmospheric. 

2. The solution for U is available from the previous step. 
For  the first step, (at the nozzle exit) U is calculated 
from the upstream stagnation pressure and the exit 
pressure distribution which is available from the 
previous iteration. 

3. Eq (2) is integrated inwards from the free stream 
boundary to give the cross-stream pressure 
distribution. 

4. Substitution of the continuity equation in Eq (1) via 
OU/t?x yields an ordinary differential equation in V. 

5. The pressures at one grid location upstream from the 
present are adjusted by the difference between the 
newly calculated pressures and those from the previous 
iteration. 

6. The x-momentum equation is solved in the (x, to) 
coordinates but with the additional terms transformed 
and approximated in the same way. 

Calculation of an axisymmetric wall jet 

Steps 2 4  are repeated until the whole flow domain has 
been covered. Iterations proceed until the wall static 
pressures change by no more than 0.2~o of their absolute 
values. In practice convergence was accelerated by use of a 
relaxation factor of 0.3 applied to the pressure correction 
in Step 5. Fig 1 shows the control volumes used. 

It should be noted that Eqs (1) and (2) are 
uncoupled by specifying Op/Ox as the gradient of the free 
stream, for this application, zero. Thus the solution for U 
is obtained effectively assuming @/Oy = 0 while that for V 
uses values of pressure obtained from integration of Eq (2) 
and is stored as a two-dimensional array. In an elliptic 
system, mean flow transport and pressure disturbances 
proceed upstream at the rate of one x-step per iteration. 
Consistent with this, pressure corrections are applied at 
one grid location upstream. The algorithm is similar to 
that of Patankar and Spalding 19 although much sim- 
plified because for this application the y-momentum (Eq 
(2)) does not contain V Thus V is obtained directly from 
the continuity equation and pressure corrections result 
only from the necessary uncoupling of the momentum 
equations rather than the additional non-satisfaction of 
the continuity equation. Patankar and Spalding use the 
Poisson equation to deduce pressure and velocity 
corrections. 

The ordinary differential equation in V is solved by 
the second order Runge-Kutta  approximation and the 
tdma with the coefficient for the (i + 1) node always zero 
(Fig 1). For  cases in which the I boundary is a wall, 
Townsend's 2° modified law of the wall is used for near- 
wall grid and wall shear stress calculations. Values of Ym/2 
and Um are calculated using Newton's divided difference 
interpolating polynomial for three nodes. 

The method is restricted to incompressible flow. 
Variable density of two mixing fluids is permitted, al- 
though only by simple mass average; scalar transport is 
not calculated. The use of upwind differences in the 
streamwise direction and also in the cross-stream direc- 
tion, when there is large lateral flux by convection, make 
the numerical scheme unconditionally stable. The pro- 
blem of numerical or 'false' diffusion is minimised by the 
use of streamline coordinates. 

Turbulence modelling 
The PS method has been applied to a wide variety of flow 
types with differing models, by Irwin and Smith 21, and 
Launder et a/22, amongst others. The current procedure 
can easily incorporate a full Reynolds stress closure. More 
recently, Gibson and Younis 2a have used a non-iterative 
version of the PS method with a Reynolds stress model for 
calculation of a curved wall jet with an extra rate of strain 
imposed only by streamline curvature. The ultimate aim 
of the present work is to apply the present calculation 
method with a Reynolds stress closure generally to flows 
with extra strain rates imposed by both axisymmetric and 
streamline curvature. For  this purpose we apply a sim- 
plified model derived from the stress transport equations 
for u 2, v 2, w E and uv, which are, for high Reynolds 
numbers: 

D(u2/2) 

Dt 

p'~u 

p 8x 

I I 

~.2 0U --OU u 2 
u -~x-hUV-~y V+UVgr 
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r 
TRANSPORT (7) 

Note that in addition to the implicit changes to 
these equations caused by higher order correlations, 
(Bradshaw3), the explicit changes introduced by the 
axisymmetric curvature give additional transport terms 
as well as an extra production term in Eq (7). 

Now the simplified model is developed by: 

(a) Approximating the transport equations leaving 
only the pressure-strain terms to be modelled. 

(b) Modelling these terms following Launder et al. 22 

(c) Neglecting the production term introduced by 
divergence in Eq (7). 

(d) Deriving the algebraic expressions for the effects of 
streamline curvature and divergence separately and 
assuming that they are linearly additive. 

The procedure (a) and (b) for streamline curvature 
has been followed by Irwin and Smith 21 and So and 
Mellor 24, and amounts to a second order mixing length 
model. It is not expected that this modelling procedure 
will be of great accuracy except for mean flow predictions. 
The justification for the assumption of linearly additive 
effects of two rates of strain is simply that the crudity of the 
initial assumptions requires no more. This procedure 
does, however, provide the first view of the problem of 
modelling flows with two extra rates of strain. 

Bradshaw 3 uses the local equilibrium approxi- 
mation to develop a first order correction for the effects of 
small extra strain rates on thin shear layers of the form: 

e 
F = 1 + ct - -  (8) 

~U/ay 

where ct is of order 10. For streamline curvature an 
equivalent expression can be derived by analogy with the 
effect of buoyancy: 

lJlo = 1 - f l  R i  s (9) 

where Ris is the flux Richardson number as defined by 
Bradshaw 25. For large curvature, So and Mellor 24 and 
Irwin and Smith 21 have made less drastic assumptions 
than that of local equilibrium. Assuming that terms uiuj 
are of order UE(ym/2/x), that terms bliUjU k a r e  of order 
(Ym/2/X) 2 U 3, and that the redistribution terms are of the 
same order as the main production terms, Eqs (4)-(7) 
reduce to their local equilibrium form but with the 
pressure-strain terms retained. They are: 

- -OU uUV p' Ou 1 
-t 3 e = 0  (10) - h u r r y  r p t?x 

2uUV h ,Or 1 r+pP (11) 

h ,~,w 1 
pp ~zz-~e =0  (12) 

--OU - -  - -  U uv 
h vZ~- j -  (2u z - v2) r -  h ~-(U sin ~ + V cos 0t) 

p' fay  _ c?u'X (13) 

Also the turbulent energy equation becomes: 

- - 0 U  ~v 
-hUV~yy +U - e = 0  (14) 

The pressure-strain terms are modelled as they were by 
Launder et al z2. The two contributions, the first 
representing interactions of the turbulence and the second 
caused by the mean rate of strain effect on the turbulence, 
are added. The modelled equations are: 
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- -#U ~vv /~ -  I'X 

2 - - S U  4--U'X e c -ihU Ty jU r)%=o (15) 

I/U 2 l "x / 1 - - 8 U  5 uv \ e 
r 

(16) 

//W 2 1\ / 1 - - S U  1 uvv\ e 
(17) 

m 

UV h ~u-~U-- (2~-~)U+ C,e~ + 
dy  r 

C 2 ( - h ~  + (2u 2 - v ~ ) U ) - h ~ R  U s in~+  Vcos ~)=0 

(18) 

--SU --U 
h uv-oyy - U V r +  e=O (19) 

Launder et al use C~ = 1.5 and C 2 =0.4. No adjustments 
are made to the pressure-strain terms for near-wall 
turbulence. Manipulation of these five equations (without 
the divegence term in Eq (18)) yields an equation of the 
form: 

K)2(OU~ a -~=loZ(1-0t,Ri-otaRi2)3/2(1- \~y  ] 

where: 

K= U/rh 
8U/Oy 

and: 

(20) 

2K(1 + K )  
Ri 

( l -K) ~ 

This procedure has been followed by So 26, Irwin 
and Smith 21 and So and Mellor 24. The constants ~1 and 
• 2 are not universal, nor are their values a direct result of 
the constants used in the pressure-strain model: the 
modelling of the pressure-strain terms merely shows the 
correct functional form of the second order mixing length 
expression. The constants are geometry-dependent since 
they have to account for the neglect of the transport terms 
which are significant to a different degree, and for the 
neglect of wall influence on the pressure-strain model. For  
the cases considered below, however, they were taken as 
constants even though the effects of streamline curvature 
on turbulent transport are known to be large. Doubtless, 
better predictions could have been obtained by 'tuning' of 
these constants, although this would have been no more 
than a 'second order' refinement. 

The effects of divergence are modelled in the form 
of Eq (8) where: 

l [1 - a (U sin ~ + Vcos ~)] 
tc= o L R OU/t3Y (21) J 

Calculation of an axisymmetric wall jet 

and the extra rate of strain is that which appears as an 
extra production term in Eq (7). The empirical constant a 
is subject to the same arguments as above. Both Eqs (20) 
and (21) give the changes in mixing length expected with 
the extra strain rates. 

The mixing length for plane wall jet cases, without 
divergence lo, is calculated by separation of the jet into 
'mixing regions' as in Fig 2 where standard values of 
K = 0.41 and 2 = 0.09 (2 = 0.075 in the case of the round free 
jet) are used. Zero shear stress at a velocity maximum in 
the region Y2- Y3 was avoided by using values from the 
adjacent mixing regions, subject to a specified minimum. 
No allowance was made for history effects, ie changes in 
terms in the transport equations which do not occur 
immediately the mean rate of strain L . . .~s. !;~wcver, 
any time constants associated with the time response of a 
shear layer to a sudden change in surface curvature are 
likely to be small in the present cases 3. Eqs (1)-(3) are of 
course invalid where dR/dx or dr/dx is large. 

Comparison w i th  exper iments 

The calculation method was tested against experimental 
data for five independent cases, all of differing geometries 
(Table 1). The method was then used to predict the flow 
over the flare geometry for two different conditions, and 
the results compared with the measurements reported by 
Morrison 17. 

Cases 5, 6 and 7 required the partially parabolic 
procedure, using the iteration for cross stream pressure 
gradient. No iteration was required for Cases 1-4. Case 3 
is the only one with the I boundary as an axis of symmetry. 
For  all cases the flow was effectively incompressible with 
the Mach Number less than 0.3. With the exception of the 
node adjacent to the wall, the nodes were distributed 

\ \ \  

Fig 2 

,i Y3 

/ ,I E l  \ \ \ \ \ \ \ \ \ \ \ \ \  
Initiol je t  Developed jet 

Mixing region boundaries 

Y4 , Y5 

~ Y2 
Yl  

Table 1 Testcases 

Slot 
Reynolds 

Case number Geometry 

1 1.4 x 1 04 

2 1.6 x 104 
3 4.3 x 104 
4 0.6 x 104 
5 1.5 x 104 

2.2 x 104 
1.4 x 104 

Flat-plate wall jet. Wilson and Goldste in( l ° )  
and Myers eta l (~)  
Radial f lat  wall jet. Bakke(1~) 
Round free jet. Rodl(27) 
Conical wall jet. SharmaQ 3) 
Wall jet over cyl inder, Wilson and GoldsteinQe). 
r / t =  16.5 
Fl~re geometry A. MorrisonOT). r / t  = 6.0 
F l a r e  geometry B. MorrisonQ7). r / t  = 15.0 
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Fig 4 Case 1 : mean velocity profiles 

according to a power law of 1.5, so that the nodes were 
closer together near the maximum of the mean velocity 
profile. 

Cases 1 - 5  

The experimental data of Case 1 was used to fix the 
entrainment constants, which were subsequently not 
changed for the other cases. Fig 3 shows the growth rate 
and maximum velocity decay for the flat wall jet (Case 1) 
indicating the good agreement achieved by adjusting the 

entrainment constants. The mean velocity profiles are 
shown in Fig 4. The calculated streamwise profile has a 
peak which is sharper and closer to the wall than the 
measured profile, and the maximum normal velocity is 
seriously underestimated. These features are common to 
all the prediction cases. The shear stress profiles are 
shown in Fig 5, which shows the change of sign of shear 
stress near the wall. The agreement is generally good 
except near the outer part of the jet. 

For  Case 2, the radial wall jet, the growth rate and 
maximum velocity decay show satisfactory agreement 
(Fig 6). A value of ~=9.0  was used in Eq (21) to account 
for the effect of streamline divergence on the mixing 
length. There was no experimental data for the shear 
stress, but Fig 7 shows the predicted shear stress about 
twice those for Case 1 (Fig 5) as expected. 
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For  Case 3, the round free jet, and Case 4, the 
conical wall jet, again satisfactory agreement was ob- 
tained for the growth rate and maximum velocity decay, 
with poorer agreement for mean velocity and shear stress 
profiles. 

Case 5 was used to fix the two constants required 
for the correction to the mixing length for the effects of 
longitudinal curvature. It was found that the values 
suggested by So 24 were satisfactory, ie ct 1 =3.26 and 
ct 2 = 3.09 in Eq (20). These values were not altered for the 
predictions for the flare geometry. The growth rate is 
predicted well, but the maximum velocity decay is not so 
well predicted (Fig 8). The shear stress profiles, Fig 9, are 
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predicted with the right trend, but are not accurate in 
detail. For  instance, the prediction at 90 ° peaks a little less 
than that for 120 °, whereas the experiments indicate 
smaller values with the 130 ° results being lower than those 
at 90 °. However, comparing with Fig 5 for the flat wall jet 
(Case l) both the predicted and the experimental shear 
stress are much increased due to the longitudinal 
curvature. 

Flare geometry, Cases 6 and 7 
Cases 6 and 7 differ only in the slot height and velocity. 
The jet growth for Case 6 is shown in Fig 10. The initial 
reduction in thickness is due to the radial outflow close to 
the slot. The growth rate is predicted fairly well when 
compared with the experimental data from both a three- 
hole cobra probe and hot wire anemometry. Fig 10 also 
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Case 6: wall shear stress Fig 12 

shows the maximum velocity decay which is poorly 
predicted. It appears that there is a problem with the 
initial development of the jet, which in this case is 
relatively thick. Fig 11 shows the growth rate and velocity 
decay for the thinner jet (Case 7). The velocity decay is 
predicted well, as is the growth rate. 

For Case 6, Fig 12 shows the wall shear stress plotted 
against the Reynolds number based on maximum velocity 
and the distance from the wall at which it occurs. The 
predictions are compared with the law given by Bradshaw 
and Gee a. The predicted shear stress shows two regions: a 
decreasing Reynolds number up to the 90 ° position 
followed by an increasing Reynolds number thereafter. 
The agreement shows that Townsend's modified law of 
the wall is fairly satisfactory. This was ensured by keeping 
node 2, adjacent to the wall, inside the log-region. The 
mean velocity profiles are shown in Fig 13. At 50 ° the 
velocity profile (compared with measurements at 60 ° ) is 
still developing and at 100 ° the tendency of the method to 
predict a too narrow velocity peak too close to the wall is 
noticeable. The shear stresses are generally under- 
predicted, particularly in the outer part of the jet (Fig 14). 
However, there the scatter in the experimental data 
indicates some uncertainty because the turbulence level is 
very high. The uneven values at 50 ° are associated with 
the development of the velocity profile and the positions 
of the mixing region boundaries. 

Discussion 

In general the partially parabolic calculation technique 
seems to work satisfactorily. There are some problems, 
particularly in the number and distribution of the grid 
points which affects the location of the 'mixing region' 
boundaries. The positions of the grid points are weighted 
towards the mean velocity maxima, consequently the 
positioning of Ys and Y4 in Fig 2 is not always sufficiently 
accurate. This is the cause of the overestimates of shear 
stress at 0 = 9 0  ° and 120 ° in Fig 9, and those of Fig 14. 
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These shear stress predictions highlight the somewhat 
arbitrary way of assigning the mixing length regions close 
to the wall as well. 

In all the test cases with large streamwise curva- 
ture, U/Um is underestimated near the velocity maxima. U 
is consequently overestimated near the jet edge. Con- 
sistent with this, the velocity decay rate is underestimated 
and V/Um is predicted less than experimental data would 
indicate. For  fully developed mean velocity profiles, the 
corresponding shear stress profiles are satisfactorily pre- 
dicted near the mean velocity maxima. In regions of high 
lateral convection, where cross-stream transport by con- 
vection exceeds that due to diffusion, the diffusive terms 
are neglected and the convective terms are expressed in 
upwind difference form to ensure stability. This is a 
simplification of the combined difference scheme of 
Spalding 2s examined by Runcha129. The neglect of dif- 
fusion under these circumstances is particularly sensitive 
in regions of large ~3 U/~3y; hence the underestimation of U 
in the region of the U-maxima and the consequent under- 
prediction of velocity decay rates. 

The effect of the wall on the pressure-strain 
redistribution terms has been neglected for the turbulence 
modelling, where Irwin and Smith 21 have retained these 
extra terms. Their neglect is commensurate with that of 
the transport terms. This is an increasing source of error in 
the shear stress predictions in the sequence of Figs 5, 9 and 
13. The profiles that show the best agreement are 
naturally those nearer the wall in Fig 5 in which there is a 
region of self-preservation. Despite neglecting the trans- 
port terms, the modelling procedure does predict the 
correct trend of the position of zero shear stress moving 
towards the wall with increasing curvature. Even so, an 
improved modelling technique would be a worthwhile 
development. 

The comparison of the predictions for Cases 6 and 
7 suffer due to the lack of two-dimensionality of the 
experimental data. Morrisonl 7 found significant evidence 
of three-dimensionality, notably base-plate boundary 
layer development and some unsteady spanwise per- 
iodicity of the flow. 

The normal stress terms are modelled by simple 
proportionality to the shear stress, and are assumed 
isotropic. No correction was made for the preferential 
effect of streamline curvature on v 2. The stability of the 
algorithm is sensitive to the crudity of the modelling for v 2 
via Eq (2) used to calculate the static pressure. 

For  the large streamline curvature, successful use 
is made of the iterative partial-parabolic procedure. The 
algorithm is unconditionally stable, provided upwind 
differences are used in the cross-stream direction for cases 
where lateral convection is high. This allows fairly large 
steps, of order Ym/2, to be taken around the surface and 
leads to an efficient computer calculation technique; the 
number of iterations required never exceeded five, typical 
run times were 5 s of cpu time (IBM 370) for the flare 
geometry with 30 cross-stream nodes. The corrections 
applied to the mixing length to allow for the extra rates of 
strain give basically satisfactory results. The simple 
addition for the flare geometry where both longitudinal 
curvature and divergence are present seems to give 
reasonable predictions of the mean features of the flow of 
engineering interest, eg growth rate. Only Cases 6 and 7 
present problems in the region in which there is a sudden 
change in surface curvature (dr /dx--~ ~ ) .  It appears that 
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the velocity decay is less well predicted as the ratio t /r  is 
increased, as shown by Figs 10 and 11 for Cases 6 and 7. 

As discussed by Morrison 17, the experimental 
results show that the change from the curved to conical 
section of the flare produces interesting effects. The 
present calculation method does not account for history 
effects except indirectly where the upstream mean velocity 
and hence shear stress profiles are affected by changes in 
pressure one grid station downstream on the previous 
iteration. 

Conclusions 
A calculation method for jet flows over curved surfaces 
has been developed. Successful use is made of the 
partially-parabolic technique with uncoupling of the 
streamwise and cross-stream momentum equations, lead- 
ing to an efficient computer program allowing relatively 
large steps in the streamwise direction with only a few 
iterations. 

The turbulence modelling of the extra rates of 
strain due to streamwise curvature and divergence is 
achieved by modifications to a mixing length model. The 
effects of the two rates of strain have been assumed to be 
additive, which gives reasonable results for the main 
features of the flow. The method is applicable generally to 
unconfined two-dimensional or axisymmetric jet flows 
with or without a solid boundary or curvature. 

Areas for future development include the use of a 
stress transport type of turbulence model, which should 
not be too difficult to incorporate into the calculation 
method. Extension to compressible subsonic flow, and 
even to flows with supersonic patches, would be desirable 
since many practical applications have high blowing 
pressures. 
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